Graph Classification using Structural Attention

John Boaz Lee!, Ryan A. Rossi?, & Xiangnan Kong!

(1) Worcester Polytechnic Institute, MA
(2) Adobe Research, CA

((1) At the step t-1, the model is at node c,, and iD
: needs to decide which — of the two — neighboring (4) We can spawn multiple agents (parallel) and each
Data rep_resented e g.raphs 2/E nodes it should explore. The rank vector r,, can be tasked to explore a different part of the graph.
naturally in many domains and one ._determines which neighbor is more relevant. y
of the primary tasks we’re usually \
interESted in iS that Of ra h [1,0,0,1,1] [1,0,0,1,1] :';l;g;;lrl"'""""'""'"""""""'""'"""""'"""'"""""'""""""""""""""".": s !
CIaSS|f|Cat|on_ \ [1’1’0’1’0?t_1 [1.1,0.1.0] i v [1,0,0,1,1] [1,0,0,1,1] [1,0,0,1,1] I [1,0,0,1,1] [1,0,0,1,1] I
[0,0,0,0,1] [0,0,0,0,1] ' [0,0,0,0,1] (110,101 [0,0,0,0,1] [0,0,0.0,1] [0,0,0,0,1]
o, . . r - r : rO 1,0,0,0,1 1,0,0,0,1
Traditional approaches typically ¢! ooon O tCPOO L000.11=d, 8 [0,0,0,1,0][92{; ][)}] ! | g:]{ A “’1’;"";‘” G- (A [D}] , . , 016001
process the entire graph to gather [0.00.1.0] | [0.00,1.0] v | o o §= iAg Dgl G- iAg Dg} |
statistics on graph structure for [100,L1] G = {Aq, Dg} G = {Ag, Dg}
classification. [1,1,0,1,0] Ctl !
WA """"""""""""""""""""""""""""" ,
: L | St T !
| The challenges include: g a0  [ow
(a) social network « poss. high computational costs T 6= (AL D) : ;
* does not necessarily avoid noisy o8 : L4 | Y
! OO0 b St OO0
parts of the graph ! ,.
! O ht i O ht+1
| A 4 ] \ 4
In this work, we propose an ra|O0O0 | Fr(;6)) —>8 > £.(;0,) »8 >
attention-based model that uses e O :' O
attentional processing to process (a) step network / \ i / \
only task-relevant parts of the graph.
f(:00 1 | f:(56,) f(;00 1 | f:(56,)
(b) molecular network (c) brain network Zt r, Zm .
! (b) GAM architecture
= active == inactive = active == inactive s J s ~N s ~
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(When we are counting graph features — say subgraph patterns — we are usually limited to\

counting fairly simple ones since the number of subgraphs can grow exponentially. An
attention mechanism can be used to focus on task-relevant parts of the graph, helping to
\_uncover more complex and useful patterns. ) Toy Example:

Benefits of Attention:

T active —otive We cr(.eated a small synthetic dataset where positive and negative graphs have We test how well the baselines are able to perform when they are given the
(D—D; recurring and well-known patterns. Below, we show the learned rank vector — same amount of information as GAM by using a random walk (equivalent to

G O—E)—F when we are at node B — showing the importance of various types of nodes. We that of GAM) to retrieve a partial snapshot of each graph.
observe that the model learns to prioritize C and E.

We observe a close to across the board deterioration of performance of the
Learned Rank Vector when Current Node is B baselines when no attention is applied.

' Parallelization _
-A- sequential (w/o memory)
—l- sequential (w/ memory)
Once trained, the agents can A parallel (w/o memory)
) : 1 M- parallel (w/ memory)
be run in parallel. On large
graphs, different agents can
' explore different parts of the
graph and their results can
D E

be integrated.

(More specifically, we use an attention-\

guided walk to direct an agent to collect
. information in more task-relevant parts
NGO _of the graph. )
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Limitations:
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It may be difficult for walks to
capture certain complex graph
patterns completely. Tree-LSTMs
are possible alternatives.
Experiments were done on
balanced datasets of relatively
small sizes. More experiments
should be conducted on graphs
from various domains.

(0]

o

o

o
I

* FINDINGS

mini-batch training steps

Future Work:
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Use more expressive node-typing
strategies.

Test more sophisticated model of
memory.
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We evaluated all methods on five real-world molecular graph datasets. All of which are made publicly C
available by the National Cancer Institute. node types

We used the following properties as node attributes: atom element, node degree, number of i ‘—H—‘ @ e i
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runtime in seconds

Contacts:

attached hydrogens, implicit valence, and atom aromaticity.
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All the datasets are highly imbalanced, we test on randomly balanced sets of 500. Results are average
results over 5-fold cross-validation.

Agg-Attr: component-wise averaging of node attributes Main Results:

Agg-WHL: calculate new node attributes using Weisfeiler-Lehman algorithm then average
Kernel-SP: shortest path graph kernel * GAM-mem performs the best. Showing it is useful

Kernel-Gr: graphlet kernel to integrate information from parts of the graph.
GAM: proposed method without memory component * GAM still performs respectably well, finishing third

GAM-mem: proposed method with memory overall.
* GAM clearly outperforms Agg-Attr & Agg-WL even

though the former only processes a part of the
graph while the latter see the entire graph.



