Graph Classification using Structural Attention

John Boaz Lee!, Ryan A. Rossi?, & Xiangnan Kong!

(1) Worcester Polytechnic Institute, MA
(2) Adobe Research, CA

((1) At the step t-1, the model is at node c,, and iD
: needs to decide which — of the two — neighboring (4) We can spawn multiple agents (parallel) and each
Data rep_resented e g.raphs 2/E nodes it should explore. The rank vector r,, can be tasked to explore a different part of the graph.
naturally in many domains and one ._determines which neighbor is more relevant. y
of the primary tasks we’re usually \
interESted in iS that Of ra h [1,0,0,1,1] [1,0,0,1,1] :';l;g;;lrl"'""""'""'"""""""'""'"""""'"""'"""""'""""""""""""""".": s !
CIaSS|f|Cat|on_ \ [1’1’0’1’0?t_1 [1.1,0.1.0] i v [1,0,0,1,1] [1,0,0,1,1] [1,0,0,1,1] I [1,0,0,1,1] [1,0,0,1,1] I
[0,0,0,0,1] [0,0,0,0,1] ' [0,0,0,0,1] (110,101 [0,0,0,0,1] [0,0,0.0,1] [0,0,0,0,1]
o, . . r - r : rO 1,0,0,0,1 1,0,0,0,1
Traditional approaches typically ¢! ooon O tCPOO L000.11=d, 8 [0,0,0,1,0][92{;][)}] ! | g:]{ A “’1’;"";‘” G- (A [D}] , . , 016001
process the entire graph to gather [0.00.1.0] | [0.00,1.0] v | o o §= iAg Dgl G- iAg Dg} |
statistics on graph structure for [100,L1] G = {Aq, Dg} G = {Ag, Dg}
classification. [1,1,0,1,0] Ctl !
WA """"""""""""""""""""""""""""" ,
: L | St T !
| The challenges include: g a0 [ow
(a) social network « poss. high computational costs T 6= (AL D) : ;
* does not necessarily avoid noisy o8 : L4 | Y
! OO0 b St OO0
parts of the graph ! ,.
! O ht i O ht+1
| A 4] \ 4
In this work, we propose an ra|O0O0 | Fr(;6)) —>8 > £.(;0,) »8 >
attention-based model that uses e O :' O
attentional processing to process (a) step network / \ i / \
only task-relevant parts of the graph.
f(:00 1 | f:(56,) f(;00 1 | f:(56,)
(b) molecular network (c) brain network Zt r, Zm .
! (b) GAM architecture
= active == inactive = active == inactive s J s ~N s ~
(2) The selected node’s attributes/features are fed (3) The rank network then determines (5) For each agent, we use softmax to (6) Information from various parts of the
into an RNN and this information is combined with what types of nodes we should prioritize assign attention weights to the hidden graph is combined and this can be used
past information (from nodes visited during previous for further exploration based on the representations at each step to prioritize for classification
\steps) to form the hidden vector h..) \information we have gathered so far (ht).) _parts with more relevant information.) i

9 [5 k 9 | 5 | 1] o0k
o >0 B The classifier is trained using cross-entropy loss, the rank network is trained using reinforcement
DO @ learning, and an advantage network to reduce model variance is trained using RMSE.
? (a) without attention (process entire graph) (b) with attention (process a part of the graph)

(When we are counting graph features — say subgraph patterns — we are usually limited to\

counting fairly simple ones since the number of subgraphs can grow exponentially. An
attention mechanism can be used to focus on task-relevant parts of the graph, helping to
_uncover more complex and useful patterns.) Toy Example:

Benefits of Attention:

T active —otive We cr(.eated a small synthetic dataset where positive and negative graphs have We test how well the baselines are able to perform when they are given the
(D—D; recurring and well-known patterns. Below, we show the learned rank vector — same amount of information as GAM by using a random walk (equivalent to

G O—E)—F when we are at node B — showing the importance of various types of nodes. We that of GAM) to retrieve a partial snapshot of each graph.
observe that the model learns to prioritize C and E.

We observe a close to across the board deterioration of performance of the
Learned Rank Vector when Current Node is B baselines when no attention is applied.

' Parallelization _
-A- sequential (w/o memory)
—l- sequential (w/ memory)
Once trained, the agents can A parallel (w/o memory)
) : 1 M- parallel (w/ memory)
be run in parallel. On large
graphs, different agents can
' explore different parts of the
graph and their results can
D E

be integrated.

(More specifically, we use an attention-\

guided walk to direct an agent to collect
. information in more task-relevant parts
NGO _of the graph.)

predicted
label

Limitations:

Q vOHe-0
0.1
D@

It may be difficult for walks to
capture certain complex graph
patterns completely. Tree-LSTMs
are possible alternatives.
Experiments were done on
balanced datasets of relatively
small sizes. More experiments
should be conducted on graphs
from various domains.

(0]

o

o

o
I

* FINDINGS

mini-batch training steps

Future Work:

(]
<

Use more expressive node-typing
strategies.

Test more sophisticated model of
memory.

N
<
1

We evaluated all methods on five real-world molecular graph datasets. All of which are made publicly C
available by the National Cancer Institute. node types

We used the following properties as node attributes: atom element, node degree, number of i ‘—H—‘ @ e i
—_————————————————— | |
| |

|

runtime in seconds

Contacts:

attached hydrogens, implicit valence, and atom aromaticity.

2I0 2I5 3I0
number of agents M jtlee@wpi.edu
ryrossi@adobe.com

xkong@wpi.edu

All the datasets are highly imbalanced, we test on randomly balanced sets of 500. Results are average
results over 5-fold cross-validation.

Agg-Attr: component-wise averaging of node attributes Main Results:

Agg-WHL: calculate new node attributes using Weisfeiler-Lehman algorithm then average
Kernel-SP: shortest path graph kernel * GAM-mem performs the best. Showing it is useful

Kernel-Gr: graphlet kernel to integrate information from parts of the graph.
GAM: proposed method without memory component * GAM still performs respectably well, finishing third

GAM-mem: proposed method with memory overall.
* GAM clearly outperforms Agg-Attr & Agg-WL even

though the former only processes a part of the
graph while the latter see the entire graph.

