
Graph Classification using Structural Attention 
John Boaz Lee1, Ryan A. Rossi2, & Xiangnan Kong1

(1) Worcester Polytechnic Institute, MA 
(2) Adobe Research, CA

• METHOD

rt-1

[1,1,0,1,0]

[1,0,0,1,1]

[0,0,0,1,0]

[1,0,0,0,1]

[0,0,0,0,1]

[0,1,0,0,0]

! = {A!, D!}

"#(. ; '#)

st

"ℎ(. ; 'ℎ)ht-1

"*(. ; '*) "+(. ; '+)

,-t rt

ht

rt

[1,0,0,1,1]

[1,1,0,1,0]

[0,0,0,1,0]

[1,0,0,0,1] = dct

[0,0,0,0,1]

[0,1,0,0,0]

! = {A!, D!}

"#(. ; '#)

st+1

"ℎ(. ; 'ℎ)

"*(. ; '*) "+(. ; '+)

,-t+1 rt+1

ht+1

(a) step network

(b) GAM architecture

[1,1,0,1,0]

[1,0,0,1,1]

[0,0,0,1,0]

[1,0,0,0,1]
[0,1,0,0,0]

! = {A!, D!}

rt-1

Step
Module

dct

'#1

'#2

st

'#3

ct-1

ct-1

[0,0,0,0,1]

ct

(1) At the step t-1, the model is at node ct-1 and it
needs to decide which – of the two – neighboring
nodes it should explore. The rank vector rt-1
determines which neighbor is more relevant.

(2) The selected node’s attributes/features are fed
into an RNN and this information is combined with
past information (from nodes visited during previous
steps) to form the hidden vector ht.

(3) The rank network then determines
what types of nodes we should prioritize
for further exploration based on the
information we have gathered so far (ht).

u1 u2 uT

r0

[1,1,0,1,0]

[1,0,0,1,1]

[0,0,0,1,0]

[1,0,0,0,1]

[0,0,0,0,1]

[0,1,0,0,0]

! = {A!, D!}

"#(. ; '#)

s1

"ℎ(. ; 'ℎ)h0

"*(. ; '*) "+(. ; '+)

r1

h1

r1

[1,0,0,1,1]

[1,1,0,1,0]

[0,0,0,1,0]

[1,0,0,0,1]

[0,0,0,0,1]

[0,1,0,0,0]

! = {A!, D!}

"#(. ; '#)

s2

"ℎ(. ; 'ℎ)

"*(. ; '*) "+(. ; '+)

r2

h2

rT-1

[1,1,0,1,0]

[1,0,0,1,1]

[1,0,0,0,1]

[0,0,0,1,0]

[0,0,0,0,1]
[0,1,0,0,0]

! = {A!, D!}

"#(. ; '#)

sT

"ℎ(. ; 'ℎ)

"*(. ; '*) "+(. ; '+)

rT

hT

…

,

p1

agent 1

…

m

,

"-(. ; '-)

./!

c0

c1
cT-1

softmax

average

c0 c1

cT-1

u1 u2 uT

r0

[1,1,0,1,0]

[1,0,0,1,1]

[0,0,0,1,0]

[1,0,0,0,1]

[0,0,0,0,1]

[0,1,0,0,0]

! = {A!, D!}

"#(. ; '#)

s1

"ℎ(. ; 'ℎ)h0

"*(. ; '*) "+(. ; '+)

r1

h1

r1

[1,0,0,1,1]

[1,1,0,1,0]

[0,0,0,1,0]

[1,0,0,0,1]

[0,0,0,0,1]

[0,1,0,0,0]

! = {A!, D!}

"#(. ; '#)

s2

"ℎ(. ; 'ℎ)

"*(. ; '*) "+(. ; '+)

r2

h2

rT-1

[1,1,0,1,0]

[1,0,0,1,1]

[1,0,0,0,1]

[0,0,0,1,0]

[0,0,0,0,1]

[0,1,0,0,0]

! = {A!, D!}

"#(. ; '#)

sT

"ℎ(. ; 'ℎ)

"*(. ; '*) "+(. ; '+)

rT

hT

…

,

pn

agent n

softmax

average

(4) We can spawn multiple agents (parallel) and each
can be tasked to explore a different part of the graph.

(5) For each agent, we use softmax to
assign attention weights to the hidden
representations at each step to prioritize
parts with more relevant information.

(6) Information from various parts of the
graph is combined and this can be used
for classification.

• MOTIVATION

The classifier is trained using cross-entropy loss, the rank network is trained using reinforcement 
learning, and an advantage network to reduce model variance is trained using RMSE.

	 	

(a)	first	brain	sub-network	 (b)	second	brain	sub-network	

(a) social network

(c) brain network(b) molecular network

Data represented as graphs arise
naturally in many domains and one
of the primary tasks we’re usually
interested in is that of graph
classification.

Traditional approaches typically
process the entire graph to gather
statistics on graph structure for
classification.

The challenges include:
• poss. high computational costs
• does not necessarily avoid noisy

parts of the graph

In this work, we propose an
attention-based model that uses
attentional processing to process
only task-relevant parts of the graph.

A

B

AB

A

B

B

A

A

A

A

B
active

A

B

B

A

A

A

A

B
B

B

A

inactive

A B B

A A

9 5
A B B

A A

9 5

A

B

AB

A

B

B

A

A

A

A

B
active

A

B

B

A

A

A

A

B
B

B

A

inactive

1 0
B

A A

B

A
BA

AB

0 1
B

A A

B

A
BA

AB

(a) without attention (process entire graph) (b) with attention (process a part of the graph)

When we are counting graph features – say subgraph patterns – we are usually limited to
counting fairly simple ones since the number of subgraphs can grow exponentially. An
attention mechanism can be used to focus on task-relevant parts of the graph, helping to
uncover more complex and useful patterns.

0.1

0.1

D D

DD

CC B A

active
D D

DD

CC E F

inactive

D D

CC B A

D D

D D

CC B A

D D

0.8 0.1

D D

CC B A

D D

0.9

C B A
predicted 

label

!∗ More specifically, we use an attention-
guided walk to direct an agent to collect
information in more task-relevant parts
of the graph.

• FINDINGS

Toy Example:

We created a small synthetic dataset where positive and negative graphs have
recurring and well-known patterns. Below, we show the learned rank vector –
when we are at node B – showing the importance of various types of nodes. We
observe that the model learns to prioritize C and E.

Benefits of Attention:

We test how well the baselines are able to perform when they are given the
same amount of information as GAM by using a random walk (equivalent to
that of GAM) to retrieve a partial snapshot of each graph.

We observe a close to across the board deterioration of performance of the
baselines when no attention is applied.

We evaluated all methods on five real-world molecular graph datasets. All of which are made publicly
available by the National Cancer Institute.

We used the following properties as node attributes: atom element, node degree, number of
attached hydrogens, implicit valence, and atom aromaticity.

All the datasets are highly imbalanced, we test on randomly balanced sets of 500. Results are average
results over 5-fold cross-validation.

• Agg-Attr: component-wise averaging of node attributes
• Agg-WL: calculate new node attributes usingWeisfeiler-Lehman algorithm then average
• Kernel-SP: shortest path graph kernel
• Kernel-Gr: graphlet kernel
• GAM: proposed method without memory component
• GAM-mem: proposed method with memory

A B C D
positive sub-pattern

A B E D
negative sub-pattern

KDD’18, August 2018, London, UK John Boaz Lee, Ryan Rossi, and Xiangnan Kong

Table 2: Performance of the baselines when we restrict their setting to that of GAMwhere they are given 20 randomly selected
partial snapshots of each graph and have to predict by voting. The column “full" indicates the performance when the entire
graph is seen and “partial" shows the performancewhen only parts of the graph is seen. “Di�." is the di�erence in performance,
a #means that performance deteriorated when only partial information is available and " shows increase in performance.

method
dataset

HIV NCI-1 NCI-33 NCI-83 NCI-123
full partial di�. full partial di�. full partial di�. full partial di�. full partial di�.

Agg-Attr 69.58 64.17 05.41 (#) 64.79 59.58 05.21 (#) 61.25 58.54 02.71 (#) 58.75 62.71 03.96 (") 60.00 57.50 02.50 (#)
Agg-WL 69.37 56.04 13.33 (#) 62.71 51.46 11.25 (#) 67.08 49.79 17.29 (#) 60.62 51.46 09.16 (#) 62.08 52.29 09.79 (#)
GAM - 74.79 - - 64.17 - - 67.29 - - 67.71 - - 64.79 -

4.3 Classi�cation Results
Table 1 shows the average classi�cation accuracy, over 5-fold cross-
validation, of the compared methods. From the results, we can see
that our proposed model is always among the top-2 in terms of per-
formance on all tested datasets. In particular, the attention model
with memory performs the best on four of the �ve datasets and
comes in at second on the �fth dataset (NCI-33). In every single
case, GAM-mem outperforms GAM which shows that adding an
external memory to integrate information from various locations
is bene�cial. However, we �nd that GAM still performs respectably
against the compared baselines and in fact comes in second on two
of the tested datasets. We also �nd that GAM outperforms Agg-Attr
and Agg-WL in almost every single case, which is remarkable since
each agent in GAM only has access to a portion of the graph while
the latter two have access to the entire graph. In our experiments,
we �nd that the �rst two baselines perform the worst, almost al-
ways performing the worst on all the datasets. The kernel-based
approaches are better, with the graphlet-based approach being supe-
rior. It is able to outperform GAM slightly. However, GAM-mem is
consistently the best performer on all the datasets that were tested.

4.3.1 Applying Random A�ention. Our experiments show that
the attention model is competitive against baselines that observe
the entire graph while our model is limited to seeing a portion of
the graph. To demonstrate the e�ectiveness of attention further, we
ran another experiment where we restrict the �rst two baselines
to the setting of GAM. It is a straightforward modi�cation since
the methods also use the graph attribute vectors. However, the
baselines do not have a concept of attention, so we use random
attention where we sample 20 subgraphs from each graph using
a random-walk of length 12. This limits the information available
to the baselines to that which is available to GAM since we �xed
M = 20 and T = 12.

Table 2 shows the result of the baselines when they only observe
a random portion of each graph. It is clear that the performance de-
teriorates for both methods, with Agg-WL showing a more marked
di�erence in performance. This is with the exception of Agg-Attr
on NCI-83. In fact, we can see that the performance of Agg-WL
drops so drastically that it performs almost no better than random
guessing on four of the �ve datasets (NCI-1, NCI-33, NCI-83, and
NCI-123). This shows that attention can help us examine parts of
the graph that are relevant.

4.4 Parameter Study
We study the e�ect of varying step sizes T on performance of
both GAM and GAM-mem. For each of the 5 datasets, we �xed

Figure 6: Average runtime when agents are run in parallel
versus sequentially.Herewe show the runtime for doing pre-
diction on a mini-batch of 32 graphs with T = 100.

all other parameters to the ones that yielded the best results and
varied T = {1, 3, · · · , 15, 18}. In both cases, accuracy increased as
we increased the number of steps with T = 12 giving fairly good
performance on all datasets on both methods. Surprisingly, we
found that both models already performed relatively well when
T � 3, in some cases being only 5-6% worse than the best accuracy.
This may be because molecular graphs are fairly small in size. We
found that GAM-mem, in general, bene�ts more from an increase
in the size of T which may be due to the fact that we are using
weighted pooling of the history vectors so the model can support
longer walks.

4.5 Parallel Execution of Agents
One advantage of our model is the ability to execute multiple agents
in parallel during prediction time. This is particularly useful when
the graph is large and we need multiple agents to explore di�erent
parts of the graph. For instance, in the task of malware classi�cation
on function-call graphs the graphs have been known to contain up
to ~37,000 nodes [12]. Also, recall that in the proposed model the
agents are not required to have access to the entire graph. In fact,
at any time-point t , the model only needs access the current node
ct and its neighbors along with their attributes. If the graph is too
large to load into memory, this information can be accessed on the
�y (e.g., from a database).

Since each agent in GAM can make an independent prediction,
the agents can be run in parallel. The only step that needs to be

Graph Classification using Structural A�ention KDD’18, August 2018, London, UK

Table 1: Summary of experimental results: “average accuracy ± SD (rank)". The “ave. rank" column shows the average rank of
each method. The lower the average rank, the better the overall performance of the method.

method dataset ave.
rankHIV NCI-1 NCI-33 NCI-83 NCI-123

Agg-Attr 69.58 ± 0.03 (4) 64.79 ± 0.04 (4) 61.25 ± 0.03 (6) 58.75 ± 0.05 (6) 60.00 ± 0.02 (6) 5.2
Agg-WL 69.37 ± 0.03 (6) 62.71 ± 0.04 (6) 67.08 ± 0.04 (5) 60.62 ± 0.02 (4) 62.08 ± 0.03 (5) 5.2
Kernel-SP 69.58 ± 0.04 (4) 65.83 ± 0.05 (3) 71.46 ± 0.03 (1) 60.42 ± 0.04 (5) 62.92 ± 0.07 (4) 3.4
Kernel-Gr 71.88 ± 0.05 (3) 67.71 ± 0.06 (1) 69.17 ± 0.03 (3) 66.04 ± 0.03 (3) 65.21 ± 0.05 (2) 2.4
GAM 74.79 ± 0.02 (2) 64.17 ± 0.05 (5) 67.29 ± 0.02 (4) 67.71 ± 0.03 (2) 64.79 ± 0.02 (3) 3.2
GAM-mem 78.54 ± 0.04 (1) 67.71 ± 0.04 (1) 69.58 ± 0.02 (2) 70.42 ± 0.03 (1) 67.08 ± 0.03 (1) 1.2

A B C D
positive sub-pattern

A B E D
negative sub-pattern

Figure 5: Rank values, over time, in the generated rank vec-
tor r1 when the rank network is given h1 encoding informa-
tion from an initial step onto node B. Higher rank value sig-
ni�es more importance.

baseline methods, all of which utilize the entire graph for feature
extraction. To the best of our knowledge, this is the �rst work on
attention with graphs so we compare against baselines that observe
the entire graph. We would like to emphasize that our proposed
model (GAM) uses attention to explore only a portion of the input
graph, this puts our model at a disadvantage since it only has partial
observability. Since the main goal is to show the viability of using
attention, we limit the architecture of our tested models to simple
ones (more detail below). The compared methods are summarized
below.

• Agg-Attr: Given an attributed graph, one simple way to con-
struct a feature vector is to get the component-wise average
of the attribute vectors of all the nodes in the graph.

• Agg-WL: The �rst approach captures information from node
attributes. However, it completely ignores the graph’s struc-
tural information. The second method uses the Weisfeiler-
Lehman (WL) algorithm [24] to calculate new node attributes
that capture the local neighborhood of each node. The al-
gorithm works by iteratively assigning a new attribute to
each node by computing a hash of the attributes of neigh-
boring nodes. We simply average the new attributes after
running the WL algorithm to use as feature vector used for
prediction.

• Kernel-SP: As in [33], we compare against the shortest path
(SP) kernel which measures the similarity of a pair of graphs
by comparing the distance of the shortest paths between
nodes in the graphs. Since we use attributed graphs, we
label the nodes in the graph by concatenating the categorical
attributes.

• Kernel-Gr: As in [33], we also compare against the graphlet
kernel which measures graph similarity by counting the
number of di�erent graphlets. Here, we evaluate against the
3-graphlet kernel and nodes are labeled as above.

• GAM: Our proposed approach which uses attention to steer
the walk of an agent on an input graph.

• GAM-mem: Proposed approachwith externalmemory. Note
that given a budget ofT for GAM , GAM-mem with n agents
has access to same amount of information if each agent is
constrained to take T

n steps.

We used a logistic regression (LR) classi�er with the �rst two
baselines. To reduce over�tting, we applied `1 and `2 regularization
and used a grid search over {0.01, 0.1, 1.0} to select the ideal regu-
larization penalty. Furthermore, we also did a grid search over the
number of iterations for the WL algorithm, we tested over {2, 3, 4}.
For a fair comparison, we limited the classi�cation network for
both our methods to a single softmax layer to make it equivalent
to LR. We also limited the number of hidden layers in all other
networks of our model to a single layer, whenever possible. For the
graph-kernel based approaches, we used an SVM classi�er using
the precomputed kernel generated by each approach. Here, we did
a grid search over C = {0.01, 0.1, 1.0}. We used a vector in R200 for
Agg-WL and limited the size of the LSTM history vector to this size
as well. In particular, we tried size = {156, 200}. We also tried the
following sizes for the �rst and second hidden layers, respectively,
of the step network: (128, 164), and (64, 128).

Since we did not �nd any noticeable change in the performance
of GAM when increasing the following parameters, we �xed their
values. We set the number of steps T = 12 and the number of
samples M = 20. M is also the number of agents we run on each
graph for prediction. For GAM-mem, we did a grid search over
T = {12, 25}, and M = {5, 10}. We use the Adam algorithm for
optimization [13] and �x the initial and �nal learning rates to 10�3
and 10�6, respectively. We also did not use discounted reward as
there was no noticeable gain, setting � = 1. Finally, we limit the
training of our methods to 200 epochs and applied early stopping
using a validation set.

Main Results:

• GAM-mem performs the best. Showing it is useful
to integrate information from parts of the graph.

• GAM still performs respectably well, finishing third
overall.

• GAM clearly outperforms Agg-Attr & Agg-WL even
though the former only processes a part of the
graph while the latter see the entire graph.

Parallelization

Once trained, the agents can
be run in parallel. On large
graphs, different agents can
explore different parts of the
graph and their results can
be integrated.

Limitations:

• It may be difficult for walks to
capture certain complex graph
patterns completely. Tree-LSTMs
are possible alternatives.

• Experiments were done on
balanced datasets of relatively
small sizes. More experiments
should be conducted on graphs
from various domains.

Future Work:

• Use more expressive node-typing
strategies.

• Test more sophisticated model of
memory.

Contacts:

jtlee@wpi.edu
ryrossi@adobe.com
xkong@wpi.edu


