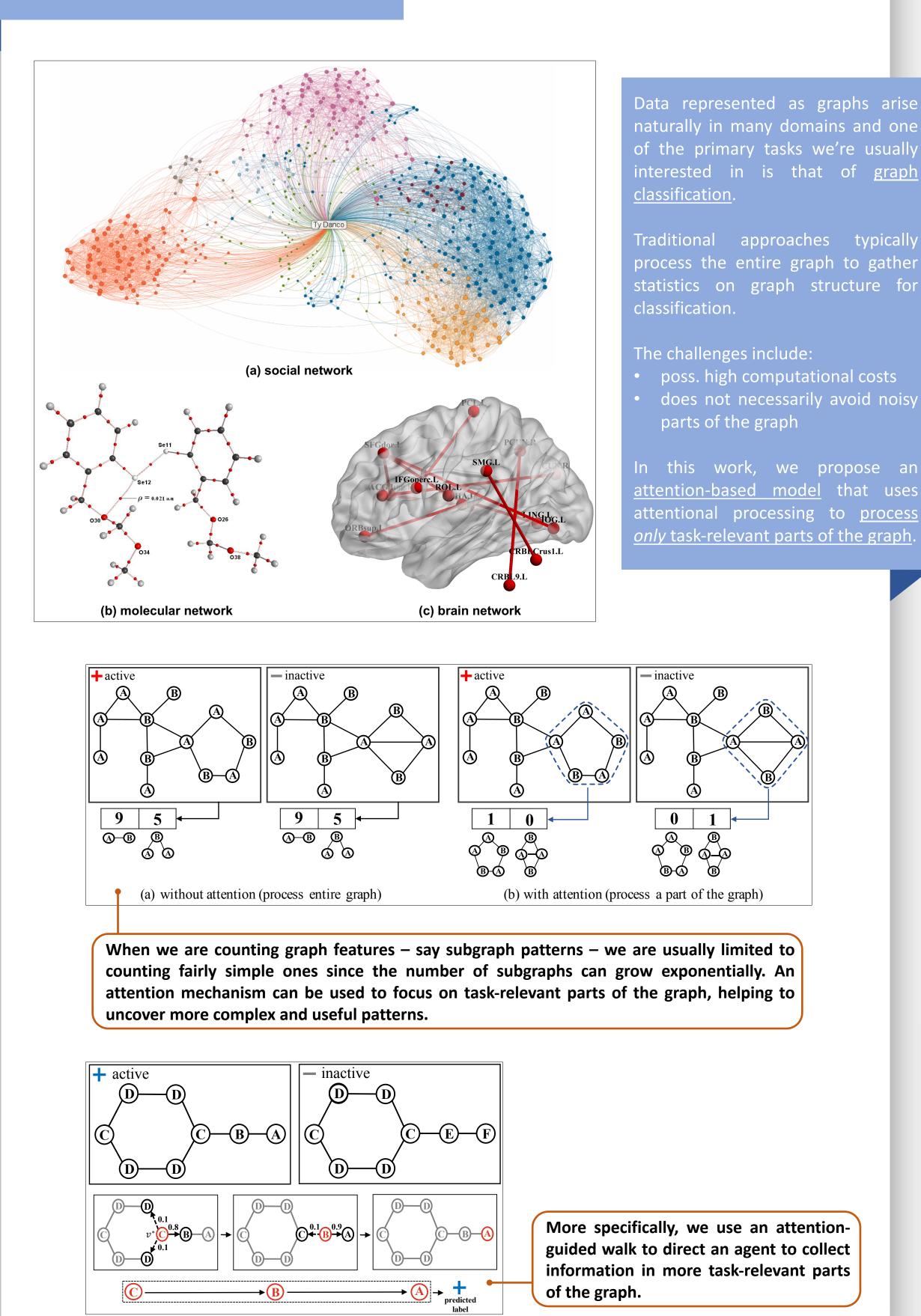


Graph Classification using Structural Attention

John Boaz Lee¹, Ryan A. Rossi², & Xiangnan Kong¹

- (1) Worcester Polytechnic Institute, MA
- (2) Adobe Research, CA

MOTIVATION



• FINDINGS

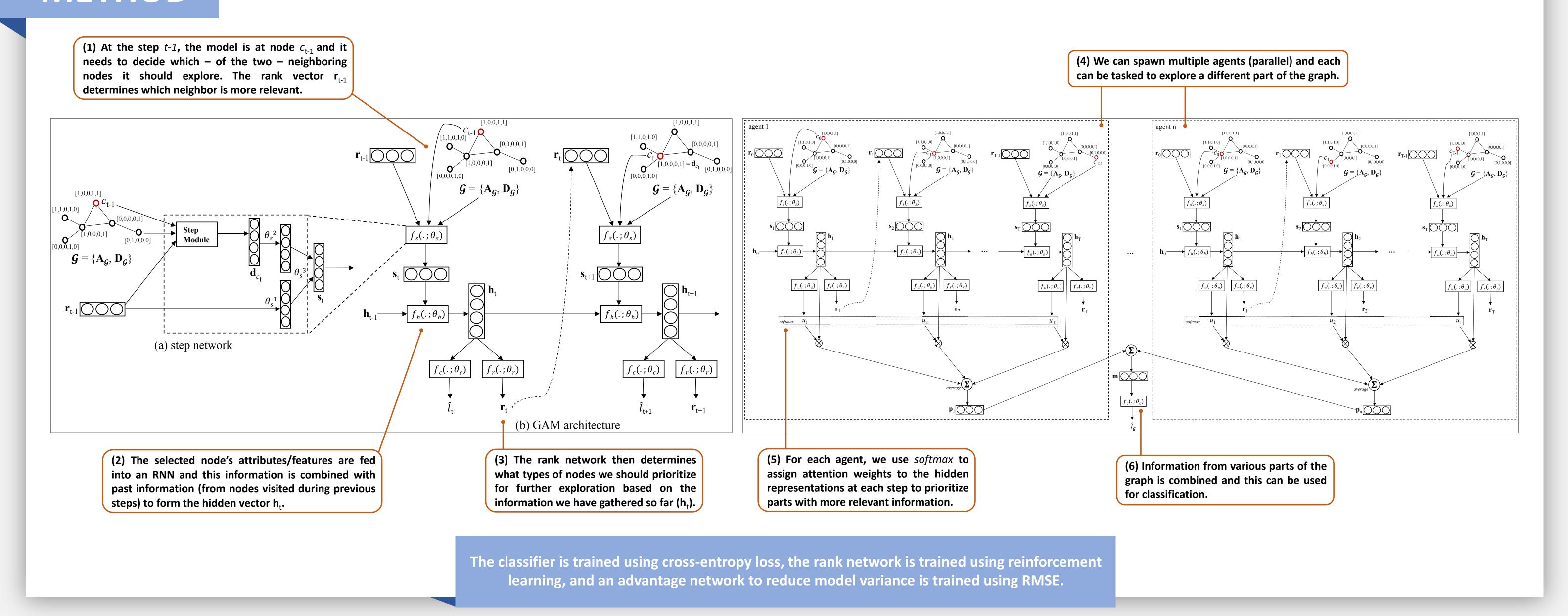
We evaluated all methods on <u>five real-world molecular graph datasets</u>. All of which are made publicly available by the **National Cancer Institute**.

We used the following properties as <u>node attributes</u>: **atom element**, **node degree**, **number of attached hydrogens**, **implicit valence**, and **atom aromaticity**.

All the datasets are highly imbalanced, we test on randomly balanced sets of 500. Results are average results over 5-fold cross-validation.

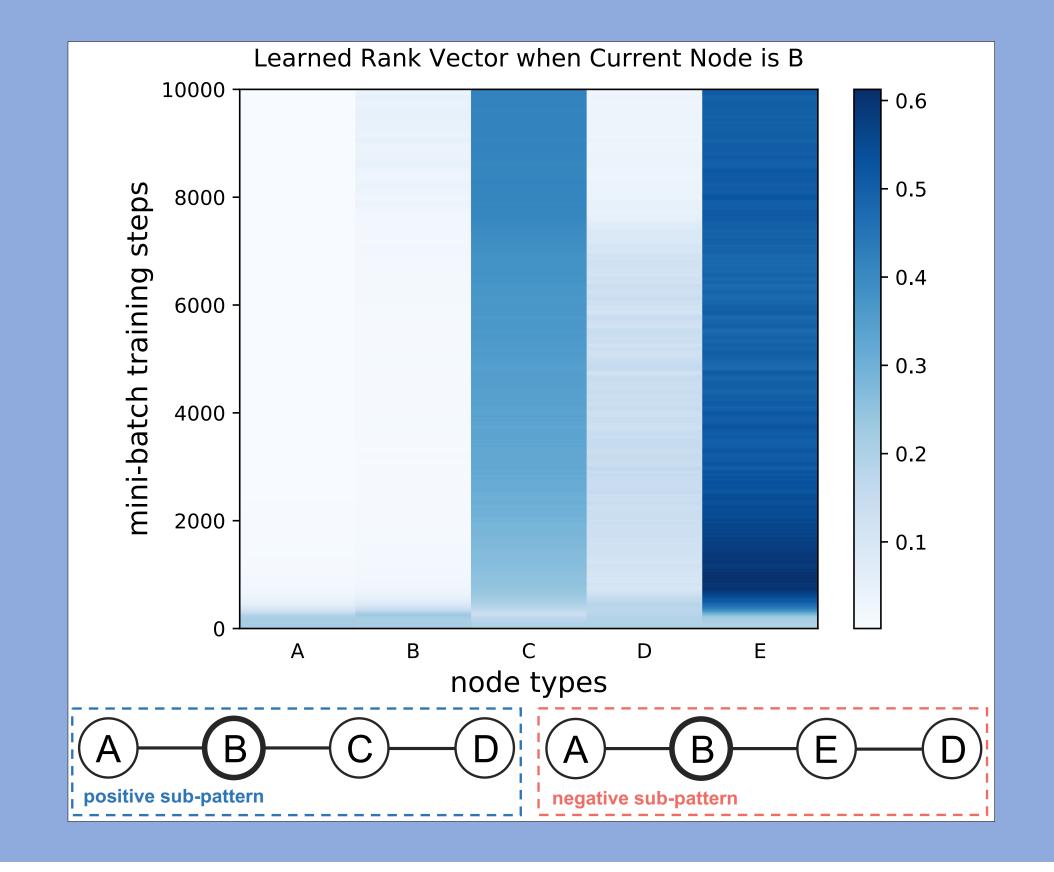
- Agg-Attr: component-wise averaging of node attributes
- Agg-WL: calculate new node attributes using Weisfeiler-Lehman algorithm then average
- Kernel-SP: shortest path graph kernel
- Kernel-Gr: graphlet kernel
- GAM: proposed method without memory component
- GAM-mem: proposed method with memory

METHOD



Toy Example:

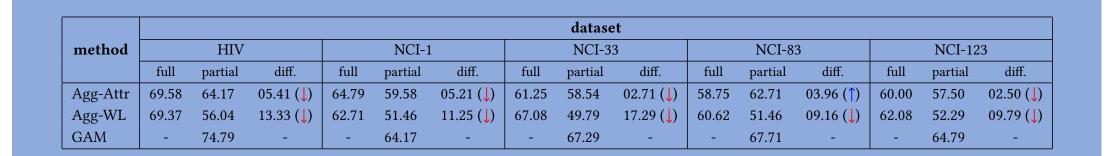
We created a small synthetic dataset where positive and negative graphs have recurring and well-known patterns. Below, we show the learned rank vector — when we are at node B — showing the importance of various types of nodes. We observe that the model learns to prioritize C and E.



Benefits of Attention:

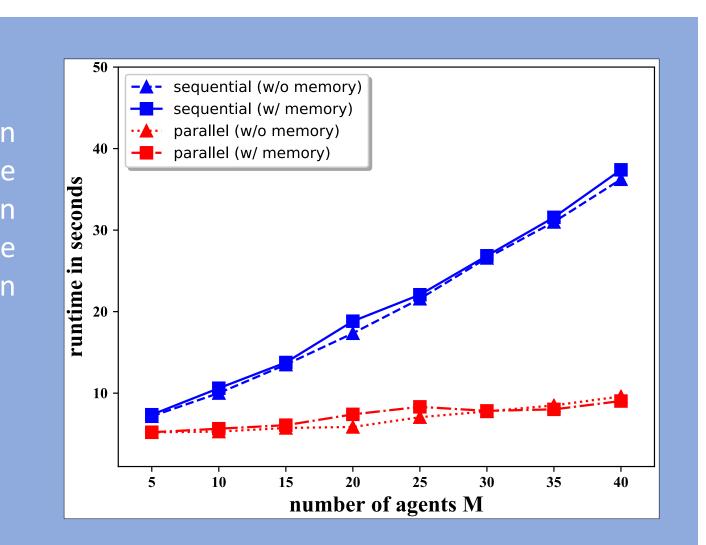
We test how well the baselines are able to perform when they are given the same amount of information as GAM by using a random walk (equivalent to that of GAM) to retrieve a partial snapshot of each graph.

We observe a close to <u>across the board deterioration of performance</u> of the baselines when no attention is applied.



Parallelization

Once trained, the agents can be run in parallel. On large graphs, different agents can explore different parts of the graph and their results can be integrated.



Main Results:

- GAM-mem performs the best. Showing it is useful
- to integrate information from parts of the graph.
 GAM still performs respectably well, finishing third overall.
- GAM clearly outperforms Agg-Attr & Agg-WL even though the former only processes a part of the graph while the latter see the entire graph.

Limitations:

- It may be difficult for walks to capture certain complex graph patterns completely. Tree-LSTMs are possible alternatives.
- Experiments were done on balanced datasets of relatively small sizes. More experiments should be conducted on graphs from various domains.

Future Work:

- Use more expressive node-typing strategies.
- Test more sophisticated model of memory.

Contacts:

jtlee@wpi.edu ryrossi@adobe.com xkong@wpi.edu

